- Back to Home »
- Persamaan Dan Pertidaksamaan Linear
Posted by : Dinii
Selasa, 24 Maret 2015
Matematika mempunyai materi yang sangat luas, tetapi satu sama lain mempunyai kaitan. Jadi dalam memahami matematika sebaiknya jangan tanggung-tanggung, walaupun sebenarnya ilmu apapun jika kita memahaminya dengan mantap maka hasilnya juga akan mantap. Kali ini materi yang akan kita bahas yaitu persamaan dan pertidaksamaan linear.
1. Persamaan Linear
Persamaan linear merupakan sebuah persamaan aljabar dimana tiap sukunya mengandung konstanta atau perkalian konstanta dengan tanda sama dengan serta variabelnya berpangkat satu. Persamaan ini dikatakan linear karena jika kita gambarkan dalam koordinat cartesius berbentuk garis lurus. Sistem persamaan linear disebut sistem persamaan linear satu variabel karena dalam sistem tersebut mempunyai satu variabel. Bentuk umum untuk persamaan linear satu variabel yaitu y=mx+b yang dalam hal ini konstanta m menggambarkan gradien garis serta konstanta b adalah titik potong garis dengan sumbu-y.
Jika dalam sistem persamaan linear terdapat dua variabel maka sistem persamaannya disebut sistem persamaan linear dua variabel yang mempunyai bentuk umum Ax+By+C=0 dimana bentuk umum ini mempunyai bentuk standar ax+by=c dengan konstanta ≠0.
Dalam mencari titik potong suatu gradien kita gunakan rumus sebagai berikut :
Titik potong dengan sumbu x maka
Titik potong dengan sumbu y maka
Untuk persamaan linear yang memiliki lebih dari dua variabel memiliki bentuk umum :
dimana a1 merupakan koefisien untuk variabel pertama x1, begitu juga untuk yang lainnya sampai variabel ke-n.
Untuk lebih memahami masalah persamaan linera perhatikan contoh berikut :
1. Berikut ini diberikan bentuk beberapa persamaan, tentukan apakah termasuk persamaan linear atau bukan.
a. x + y = 5 (persamaan linear dua variabel)
b. x2 + 6x = -8 (persamaan kuadrat satu variabel)
c. p2 + q2 = 13 (persamaan kuadrat dua variabel)
d. 2x + 4y + z = 6 (persamaan linear tiga varibel)
2. Carilah penyelesaian sistem persamaan x + 2y = 8 dan 2x – y = 6
Jawab ;
x + 2y = 8
2x – y = 6
(i) mengeliminasi variable x
x + 2y = 8 | x 2 | –> 2x + 4y = 16
2x – y = 6 | x 1 | –> 2x – y = 6 – ………*
5y = 10
y = 2
masukkan nilai y = 2 ke dalam suatu persamaan
x + 2 y = 8
x + 2. 2 = 8
x + 4 = 8
x = 8 – 4
x = 4
HP = {4, 2}
(ii) mengeliminasi variable y
x + 2y = 8 | x 1 | –> x + 2y = 8
2x – y = 6 | x 2 | –> 4x – 2y = 12 + ……*
5x = 20
x = 4
masukkan nilai x = 4 ke dalam suatu persamaan
x + 2 y = 8
4 + 2y = 8
2y = 8 – 4
2y = 4
y = 2
4 = 2
HP = {4, 2}
Jawab ;
x + 2y = 8
2x – y = 6
(i) mengeliminasi variable x
x + 2y = 8 | x 2 | –> 2x + 4y = 16
2x – y = 6 | x 1 | –> 2x – y = 6 – ………*
5y = 10
y = 2
masukkan nilai y = 2 ke dalam suatu persamaan
x + 2 y = 8
x + 2. 2 = 8
x + 4 = 8
x = 8 – 4
x = 4
HP = {4, 2}
(ii) mengeliminasi variable y
x + 2y = 8 | x 1 | –> x + 2y = 8
2x – y = 6 | x 2 | –> 4x – 2y = 12 + ……*
5x = 20
x = 4
masukkan nilai x = 4 ke dalam suatu persamaan
x + 2 y = 8
4 + 2y = 8
2y = 8 – 4
2y = 4
y = 2
4 = 2
HP = {4, 2}
3. Selesaikan soal no 2 menggunakan cara substitusi
Jawab :
Kita ambil persamaan pertama yang akan disubstitusikan yaitu x + 2y = 8
Selanjutnya persamaan tersebut kita ubah menjadi x = 8 – 2y,
Persamaan yang diubah tersebut disubstitusikan ke persamaan
2x – y = 6 menjadi : 2 (8 – 2y) – y = 6 ; (x persamaan kedua menjadi x = 8 – 2y)
16 – 4y – y = 6
16 – 5y = 6
-5y = 6 – 16
-5y = -10
5y = 10
y = 2
masukkan nilai y=2 ke dalam salah satu persamaan :
x + 2y = 8
x + 2. 2. = 8
x + 4 = 8
x = 8 – 4
x = 4
Jadi penyelesaian sistem persamaan tersebut adalah x = 4 dan y = 2.
Himpunan penyelesaiannya : HP = {4, 2}
Selanjutnya persamaan tersebut kita ubah menjadi x = 8 – 2y,
Persamaan yang diubah tersebut disubstitusikan ke persamaan
2x – y = 6 menjadi : 2 (8 – 2y) – y = 6 ; (x persamaan kedua menjadi x = 8 – 2y)
16 – 4y – y = 6
16 – 5y = 6
-5y = 6 – 16
-5y = -10
5y = 10
y = 2
masukkan nilai y=2 ke dalam salah satu persamaan :
x + 2y = 8
x + 2. 2. = 8
x + 4 = 8
x = 8 – 4
x = 4
Jadi penyelesaian sistem persamaan tersebut adalah x = 4 dan y = 2.
Himpunan penyelesaiannya : HP = {4, 2}
4. Harga 2 buah mangga dan 3 buah jeruk adalah Rp. 6000, kemudian apabila membeli 5 buah mangga dan 4 buah jeruk adalah Rp11.500,-
Berapa jumlah uang yang harus dibayar apabila kita akan membeli 4 buah mangga dan 5 . buah jeruk ?
Jawab :
Dalam menyelesaikan persoalan cerita seperti di atas diperlukan penggunaan model matematika.
Misal: harga 1 buah mangga adalah x dan harga 1 buah jeruk adalah y
Maka model matematika soal tersebut di atas adalah :
2x + 3 y = 6000
5x + 4 y = 11500
Ditanya 4 x + 5 y = ?
Kita eliminasi variable x :
2x + 3 y = 6000 | x 5 | = 10x + 15 y = 30.000
5x + 4 y = 11500 | x 2 | = 10x + 8 y = 23.000 – ( karena x persamaan 1 dan 2 +)
7y = 7000
y = 1000
masukkan ke dalam suatu persamaan :
2x + 3 y = 6000
2x + 3 . 1000 = 6000
2x + 3000 = 6000
2x = 6000 – 3000
2x = 3000
x = 1500
didapatkan x = 1500 (harga sebuah mangga) dan y = 1000 (harga sebuah jeruk)
sehingga uang yang harus dibayar untuk membeli 4 buah mangga dan 5 buah jeruk
adalah 4 x + 5 y = 4. 1500 + 5. 1000
= 6000 + 5000 = Rp. 11.000,-
Berapa jumlah uang yang harus dibayar apabila kita akan membeli 4 buah mangga dan 5 . buah jeruk ?
Jawab :
Dalam menyelesaikan persoalan cerita seperti di atas diperlukan penggunaan model matematika.
Misal: harga 1 buah mangga adalah x dan harga 1 buah jeruk adalah y
Maka model matematika soal tersebut di atas adalah :
2x + 3 y = 6000
5x + 4 y = 11500
Ditanya 4 x + 5 y = ?
Kita eliminasi variable x :
2x + 3 y = 6000 | x 5 | = 10x + 15 y = 30.000
5x + 4 y = 11500 | x 2 | = 10x + 8 y = 23.000 – ( karena x persamaan 1 dan 2 +)
7y = 7000
y = 1000
masukkan ke dalam suatu persamaan :
2x + 3 y = 6000
2x + 3 . 1000 = 6000
2x + 3000 = 6000
2x = 6000 – 3000
2x = 3000
x = 1500
didapatkan x = 1500 (harga sebuah mangga) dan y = 1000 (harga sebuah jeruk)
sehingga uang yang harus dibayar untuk membeli 4 buah mangga dan 5 buah jeruk
adalah 4 x + 5 y = 4. 1500 + 5. 1000
= 6000 + 5000 = Rp. 11.000,-
2. Pertidaksamaan Linear
Pertidaksamaan linear merupakan kalimat terbuka dalam matematika yang terdiri dari variabel berderajat satu dan dihubungkan dengan tanda pertidaksamaan. Bentuk umum dari pertidaksamaan linear dua variabel yaitu :
ax+by>c
ax+by<c
ax+by≥c
ax+by≤c
dengan a koefisien untuk x, b koefisien dari y dan c konstanta dimana a,b,c anggota bilangan riil dan a≠0,b≠0 .
Suatu penyelesaian dari pertidaksamaan linear biasanya digambarkan dengan grafik, adapun langkah-langkah dalam menggambar grafik pertidaksamaan linear yaitu sebagai berikut :
1. Ubah tanda ketidaksamaan menjadi persamaan
2. Tentukan titik potong koordinat kartesius dengan sumbu x dan sumbu y.
3. Gunakan titik uji untuk menentukan daerah penyelesaian.
4. Gambarkan grafiknya dan beri arsiran pada daerah penyelesaiannya.
Untuk lebih memahami tentang pertidaksamaan perhatikan beberapa contoh berikut :
contoh 1.
contoh 2.
contoh 3.
Gambarlah daerah penyelesaian dari sistem pertidaksamaan linear berikut untuk x, y anggota bilangan real.
–x + 8y ≤ 80
2x – 4y ≤ 5
2x + y ≥ 12
2x – y ≥ 4
x ≥ 0, y ≥ 0
Penyelesaian :
Ubah pertidaksamaan menjadi bentuk persamaan dan gambarkan pada bidang koordinat
Selanjutnya uji titiknya untuk menentukan daerah penyelesaian. Dapat dengan cara substitusi atau dengan garis bilangan. Pada contoh kali ini menggunakan substitusi misalkan kita pilih titik (0,12)
Setelah titk tersebut disubstitusi menghasilkan pernyataan yang salah, sehingga daerah penyelesaiannya berlawanan dengan daerah yang mengandung titik (0,12).
Dengan cara yang sama untuk persamaan yang lain telah kita peroleh grafik sebagai berikut.
Daerah penyelesaian dari pertidaksamaan tersebut adalah daerah yang terkena seluruh arsiran, yaitu :
Semoga artikel ini dapat bermanfaat, selain materi persamaan dan pertidaksamaan linear ini sebelumnya telah saya berikan materi pertidaksamaan kuadrat. Selamat Belajar dan Semoga Sukses.